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Abstract

\

~

Tensor methods are a class of general purpose methods for solving systems of nonlinear
equations. They are especially intended to efficiently solve problems where the Jacobian
matrix at the solution is singular or ill-conditioned, while remaining at least as efficient as
standard methods on nonsingular problems. Their distinguishing feature is that they base each
iteration on a quadratic model of the nonlinear function. The mode! has a simple second order
term that allows it to interpolate more information about the nonlinear function than stan-
dard, linear model based methods, without significantly increasing the cost of forming, storing,
or solving the model.

This paper summarizes two types of tensor methods, derivative tensor methods that cal-
culate an analytic or finite difference Jacobian at each iteration, and secant tensor methods
that avoid Jacobian evaluations. Both are shown to require no more function or derivative
information per iteration, and hardly more storage or arithmetic operations per iteration, than
standard linear model based methods. Computational results are presented that indicate that
both tensor methods are consistently at least ns reliable as the corresponding linear model

based methods, and are significantly more efficient, both on nonsingular and on singular test

(ST
problems. ~—
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1. Introduction

This paper summarizes a recently developed class of methods, called tensor methods, for

solving the nonlinear equations problem

given F:R"—R", find z,€R" such that F(z,) =0 (1.1)

where it is assumed that F{z) is at least once continuously differentiable. Tensor methods are
especially intended to efficiently solve problems where the Jacobian matrix of F at z,,

F (¢,) ER" ", is singular or ill-conditioned. They also are intended to be at least as efficient

w
as standard methods on problems where F (z,) is nonsingular. Their distinguishing feature is

that they base each iteration on a quadratic model of F(z) whose second order term has a sim-

ple form.

Systems of nonlinear equations arise frequently in many practical applications including
equilibrium calculations, curve tracing problems, and as subproblems in solving nonlinear sys-
tems of differential equations. In many important situations, F '(z*) is singular or ill-
conditioned. For example, in some stiff systems of ordinary differential equations the Jacobian
of the associated system of nonlinear equations is nearly singular for all z. The calculation of
turning points in curve tracing problems and the solution of over-parameterized data fitting
problems are other common situations that lead to singular systems of equations. In all these
cases, it is important to notice that the (near) rank deficiency in the derivative matrix usually

is small. This is the case in which our methods are intended to improve upon standard

methods.

Standard methods for solving (1.1) base each iteration upon a linear model M(z) of F(z)

. - n
around the current iterate z_ R
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M(z +d) = F(z,) + J.d (1.2)

"*"  These methods can be divided into two classes: derivative methods,

where d€R", J €R
where J_ is the current Jacobian matrix F (z,) or a finite difference approximation to it, and

secant methods, where J_ is a secant (quasi-Newton) approximation to the Jacobian. For a

general description of these methods, see e.g. Dennis and Schnabel {19831

When the analytic Jacobian is available, the linear model (1.2) becomes
M(z,+d) = F(z,) + F (z,)d. (1.3)

The standard method for nonlinear equations, Newton's method, consists of setting the next
iterate z_ to the root of (1.3),

r, =z, —F(z)"

+

F(z,). (1.4)

If F (z,)is Lipschitz continuous in a neighborhood containing the root z, and F (z,) is non-
singular, then the sequence of iterates produced by (1.4) converges locally and g-quadratically
to z,. This means that there exist >0 and c¢ -0 such that the sequence of iterates }z,, pro-

duced by Newton's method obeys
I e el 1%
,,,—z "¢ lz, -z,
if llzg — z Il < & In practice, local g-quadratic convergence means eventual fast convergence.

Newton's method usually is not quickly locally convergent, however, if F (r ) is singular.

For example when applied to one equation in one unknown (n=1) where f(z_)=0 but

f (£,)#0, Newton's method is locally ¢-linearly convergent with constant converging to '

meaning that the sequence of iterates I, obeys

e T

k—

if 1zy -r .. is sufficiently small. For sysiems of equations, the situation is more complex and
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has been analyzed by many authors, including Decker and Kelley [1980a, 1980b, 1982, Decker,

Keller, and Kelley 1983, Griewank 11980a, 1980b, 1985;, Griewank and Osborne [1981,1983,
Keller '1970!, Kelley and Suresh {1983}, Rall [1966], and Reddien 11978, 1980 In summary,
their papers show that from many starting points, Newton’s method for systems of equations
also is locally g¢-linearly convergent with constant converging to '», although for some problems
with starting points arbitrarily close to z, (1.4) may be undefined or lead further away from
the solution (see e.g. Griewank and Osborne [1983}). In practice, Newton’s method usually
exhibits local linear convergence with constant = ': on singular problems, much slower conver-

gence than one would like.

When analytic derivatives are unavailable and function evaluation is expensive, (1.1) gen-
erally is solved by a secant method. These methods attempt, as much as possible, to solve (1.1)
using only the function values at the iterates. The oot 71 2) il i ed but the matrix J, is
generated from these function values and may be a very rough approximation to F ‘(zc). In
the most commonly used secant method for systems of equations, Broyden's method, the Jaco-
bian approximation J, is chosen to be the smallest change to the previous Jacobian approxima-
tion which causes the new linear model M(z) to interpolate the value of F(z) at the previous
iterate. This results in a rank one change to the Jacobian approximation at each iteration.
(The details are given in Section 3.1.) The initial Jacobian approximation is made by finite

differences, and sometimes it is necessary to reset J, to a finite difference approximation at

subsequent iterations.

The sequence of iterates produced by Broyden's method converges locally and g¢-
superlinearly to r_ as long as F (r.) is Lipschitz continuous in a neighborhood containing the

root £ and F .(r‘) is nonsingular {Broyden’ Dennis, and Mor€ 1973!). This means that there

exist ~ ‘0 and - 0 such that the sequence of iterates |z, | obeys




lim Mz, , -z M/lz, —2, =0

k— >

if flzg - z M2 0 and Ny — Fz )l < n In practice, secant methods still are quickly conver-
gent on nonsingular problems, and while they usually require more iterations than Newton’s

method, they usually require fewer function evaluations than a finite difference implementation

b of Newton's method.

However secant methods, like Newton’s method, are slowly convergent on problems where
F (z,) is singular. For example on one variable problems with fl(z*):O but f (z,)#0. the

secant method is locally ¢-linearly convergent with constant converging to 0.618, a slightly

'

slower rate than Newton’s method. For multiple variable problems with rank(F (z)) = n -1,
, Decker and Kelley {1985 have shown that this same rate of convergence is obtained by
L Broyden's method from certain starting points. As in the case of Newton's method, this slow
linear convergence usually is observed in practice, making quicker methods desirable.

Several papers, for example Decker and Kelley {1982}, Decker, Keller, and Keiley (1983,
Griewank [1980a, 1985, Kelley (1985, and Kelley and Suresh [1983!, propose methods that are
rapidly convergent on some singular problems. Many of these methods are related to the one
dimensional acceleration technique of taking j times the Newton step if one has a root of mul-
tiplicity j. Some other methods explicitly calculate and use higher derivative information in
null space directions. To our knowledge, no computational experience with a complete method

of this type has been published, and it is not clear how amenable these techniques are to solv-

ing general systems of nonlinear equations where it is unknown a priori whether F (r,) 1s

singular or not.

The major aim of tensor methods is to provide general purpose methods that have rapid
'
convergence even when F (r,) is singular. In addition, the methods should not experience any

special difficulty when J, is singular or ill-conditioned, while methods based on (1.2) must be
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modified in this case.

L = = g
o

Tensor methods are based on expanding the linear model (1.2} of F(z) around z, to the
quadratic model
Mi(z,+d) = F(z,}) - J & + 2T dd (1.5)

XX . ' . . . . .
MM and J.is F (z_) or a secant approximation to it. The three dimensional

where T ZR
abject T_ often is referred to as a tensor, hence we call (1.5) a tensor model, and methods
based upon (1.3) tensor methods. The term T, dd is defined by (T,dd) 'i] = dTHld, where M is

the i horizontal face of T_. Thus the model M (z, - d) is the n-vector of quadratic models of

the component functions of F(r),
‘ T T .
(AV[T(IC »d)) '[‘ = f' - g‘ d - l__,d H‘d , 1 = 1' ceen

where [ = F(z,)[i, g; = row i of F () or an approaimation to 1t, and tf is (an approxima-

. . . (A .
tion to) the Hessian matrix of the ¢ component function of F(z).

i

The obvious choice of T, in (1.5) is the matrix F ’ (z.) of second partial derivatives of F

at z; il J, is F (z,), this makes (1.5) the first three terms of the Taylor series expansion of F

around z_. Several serious disadvantages, however, make (1.5} with T, = # (z_ ) unacceptable

[ )

for algorithmic use. First, the n® second partial derivatives of F at z_ would have to be com-
puted at each iteration. Second, the model would take more than n3/2 locations to store as
compared to the n® locations for the standard model. Third, to find a root of the model. at
each iteration one would have to solve a system of n quadratic equations in n unknowns,

which for n - 1 requires an iterative procedure. Finally, the model might not have a real root.

To use a model of form (1.5) and avoid these disadvantages, our tensor methods use a
very restricted form of T,. In particular, our tensor methods require no additional derivative
or function information; the additional costs of forming and solving the tensor model are small

3, . . . . .
compared to the O(n”) arithmetic cost per iteration of standard methods; and the additional
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storage required for our tensor models is small compared to the n’ storage required for the
Jacobian. The remainder of this paper describes how we utilize the tensor term T, in the
model (1.5) and what benefits we obtain from its inclusion. In Section 2 we summarize the use
of a tensor model in derivative methods for nonlinear equations, and our computational experi-
ence with this method. Section 3 similarly presents the use of and computational experience
with a tensor model in secant methods for nonlinear equations. In Section 4 we briefly com-

ment on extensions of tensor methods to nonlinear least squares and to unconstrained optimi-

zation. More details on this research can be found in Frank 1984 , Schnabel and Frank 1984,

and an upcoming paper by Frank and Schnabel.

Notice that we are denoting members of a sequence of n-vectors r by |r,| where each

zk{—R", and componeats of a vector veR” by vii CR.

2. Derivative tensor methods

Derivative tensor methods base an algorithm for solving systems of nonlinear equations

on a model of the form

d) - F(z,) - Fz)d - T dd, (21)

c

.WT(I

where it is assumed that F (r,) either is supplied analytically or is calculated by finite

. . . . ~ nxn~n . .
differences. Their aim is to choose T <R so 1nat the model (2.1} is hardly more expen-

E

sive to form. store, or solve than the standard model {1.3), while still leading to an algorithm

Al

that requires fewer function evaluations than standard methods to solve dithicuft problems.
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2.1 Forming the tensor model

The first step in deriving a method based on (2.1) is to choose the second order term T, .
We do not use any second derivative information in constructing T,.. Instead, we construct the
second order term in (2.1} by asking the model to interpolate additional values of the function

F(z) that have already been computed by the algorithm. In particular, we ask the mode! to

satisly
F(z_)=F(z,) ~ F (z,)5, - "T.5,8, k=1, - .p (2.2a)
where
S, *x_, —1, k=1, N (2.2b)
and r |, " " - I_, afe some set of p not necessarily consecutive past iterates.

For the equations (2.2) to be consistent, the past points |z_,| must be selected so that
set of directions |s, | is linearly independent. In fact, we enforce a far more restrictive condi-

tion. We always set z_, to the most recent iterate. We then include each remaining past

-1
iterate in the set of points to be interpolated if the step from it to z_ makes an angle of at
ieast © degrees with the subspace spanned by the steps to the already selected more recent
iterates. Here © is some fixed angle between 20 and 45 degrees. In addition, we consider at
most v n past iterates. The bounds n and 20-45 degrees have been shown by computational
experience to be reasonable. This procedure for selecting past iterates to interpolate is imple-

9
mented easily using a modified Gram-Schmidt aigorithm, and requires about n” multiplications

and additions.

. . o 15 . . , 3 -
The equations (2.2) are a set of np © n ~ linear equations in the n~ unknowns comprising
T.. Thus T_is underdetermined, so we follow the standard and successful practice in secant
methods for nonlinear equations and optimization (sce e.g. Dennis and Schnabel 1979 ) and

choose TC to be the solution to

faradiet ed Aog g
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: TR

subject to T s, s, = ¢, =2( F(x ) ~Flz,) —F (z.)s, ). k=1, ---p

- _ , Ao
N where Il is the Frobenius norm. [f we denote by uvw the rank one tensor whose 1 horizon-
- : o ., T . . <
. tal face is the rank one matrix u ¢ (vw’), then the solution to (2.3) is shown by Schnabel and

Frank 1984 to be

- n

. T, =X o s s (2.4)

‘ k=1

T -1 . Y & . . _ .

. where (a 1, -« a ) =M (e ) 1= n, with M=R"™? the positive
s T 2
v T ] . Ty o= <y 47
) definite matrix defined by M 1.ji = (s, s]) , 1<, y<p.

4
'_4
D Substituting (2.4) into the tensor model (2.1) gives
. 4
A ' \ T 2 )
N Mp(z,~d) = F(z,) + F (z)d + 2 Y g (d" ;)" {2.5)

. k=1

y The simple form of the second order term in (2.5) is the key to being able to efficiently form,
. store, and solve the tensor model. Since p'ivn , the additional storage for the entire method
- . - 2 ! .

- is at most +* n n-vectors, compared to the n” storage for F' {r_). The cost of forming the ten-

’ . 25 T - . .

: sor model by the above procedure is at most n°  multiplications and additions per iteration,
. small compared to the at least n" /3 multiplications and additions per iteration required by
N standard methods.
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2.2 Solving the derivative tensor model

"o base an efficient algorithm on the tensor model (2.3}, we need tc efficiently find a root
of this model, that is a dSR" for which

14
¢ ) \ T
Mo(z,+d) = F(z,) + F (z,)d ~% N\ q, (d"s,)° =0. (2.6)
k=1

In some cases, the tensor model may have no root; it is then appropriate to choose d to minim-
ize the tensor model in some norm. We choose the /, norm, so that the general problem we

wish to solve is to choose d€R" to minimize My (z, ~d)l,.

The basic idea behind efficiently solving {2.6) is that since My only is quadratic on the p
dimensional subspace spanned by |s, |, and is linear on the orthogonal complement to this sub-
space, it may be possible to solve (2.6) by solvina a svstem of p quadratic equations in p unk-
nowns plus a system of n-—p linear equations in n—p unknowns. This is accomplished by a

procedure given in Schnabel and Frank {1984]. This procedure first makes an orthogonal
transformation of the variable space to d = QTd, so that all n equations are quadratic only in

the last p components of d, JZERP, and are linear in the first n—p components, &’IGR"". It

then makes an orthogonal transformation of the equations that eliminates the linear variables
d‘ from the final p {actually g >p, see below) equations and makes the preceding equations tri-

angular in d,. The result is n —¢ equations that are linear in the n—p variables d,,

T
: 1 y ro 4 ) f , ; 12__ 2.7
Fy~ Jid ~ Jydy + ' A, 1S, dy}" =0 (2.72)

where J is upper triangular, pius the system of ¢ quadratic equations in the p unknowns d,

?_ (2.7b)

)
)
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Here ¢>p, with ¢=p as long as J is nonsingular, or J is singular but J augmented by the p
rows :a:} has full column rank. In practice this means that g generally equals p unless

rank(F '(zc)) < n—p. The root or minimizer of M is then found from (2'7) by calculating the
dz which is the root of minimizer of the quadratic system of equations (2.7b), substituting this
“‘z into (2.7a) and calculating &1 by solving a triangular system of linear equations, and multi-
plying Qby @ to obtain 4.

The cost of solving the tensor model by this prccess is the standard 2/3 n® cost of a QR
factorization, plus an additional nzp < n*® cost for the orthogonal transformation of the vari-
able space, plus the cost of solving the pxp system of quadratics. The latter is limited to O(p)
iterations which each cost p3/6 multiplication and additions, so it is an insignificant O(p‘) <
O(nz) cost. The case p=1 is the most frequent in our computational experience, and in this
case the quadratic equation is solved or minimized analytically. Thus solving the derivative
tensor model costs essentially the same as finding the root of the standard linear model (1.3) by
the QR factorization. It is possible to adapt the tensor solution algorithm to use the PLU fac-

torization, or a sparse factorization, instead.

On singular problems with rank(F '(z*)) > n—p, the solution of the tensor model by the
above process usually will be well posed. The convergence analysis for singular systems of non-

linear equations shows that near z,, we can expect the past steps |s, | to be in directions near

"
the null vectors of F I(z*). In this case, the quadratic term of the tensor model supplies infor-
mation in the directions where the linear model is lacking. This results in the linear system
(2.7a) being well conditioned, and moves the iil-conditioning of the standard linear model into
the linear term of the quadratic equations (2.7b), which still are well posed due to the qua-

dratic term.
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In addition, if F l(zc) happens to be singular or ill-conditioned at any iteration on any
problem, and has p or fewer small or zero singular values, then the solution of the tensor model

usually will be well posed for similar reasons.

2.3 Computational results with the derivative tensor method

A computer implementation of a derivative tensor method that is based upon the ideas
summarized in Sections 2.1 and 2.2 has been extensively tested. A high level description of the

method we have implemented is given in Algorithm 2.1.

Algorithm 2.1. An Iteration of the Derivative Tensor Method: given z,, F(z,)

1. Calculate F ‘(zc) and decide whether to stop. If not :

2. Select the past points to use in the tensor model from among the Vn most recent past
points.

3. Calculate the second order term of the tensor model, T,, so that the tensor model interpo-
lates F(z) at all the points selected in step 2.

4. Find the root of the tensor model , or its minimizer (in the I, norm) if it has no real root.

5. Select z, =z — )\, d,, where d, either is the step calculated in step 4 or the Newton step,
using a line search to choose \ .

6. Set z, — 1z, F(z,) «— F(z,), go tostep 1.

Details of our implementation are given in Frank [1984] and Schnabel and Frank [1984].

Y ¥ w v
ae

P& et

Note that the Newton step is calc 1lated as a byproduct of the tensor model solution, and occa-
sionally is used as the search direction in the tensor method. In particular, the Newton step is

used in step 5 if Algorithm 2.1 finds a root d; of the tensor model that isn't a descent direction
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for HF(z)ll, (a very rare occurrence in practice but not precluded in theory) and the point
£, +dr is unacceptable; if Algorithm 2.1 finds a minimizer of the tensor model at which the [,
norm of the tensor model hasn't decreased enough from z_; or if Algorithm 2.1 fails to find a

root or minimizer of the tensor model in 8p iterations.

We compared our tensor method to an algorithm that is identical except that the second ;
order term T, always is zero. That is, the comparison algorithm is a finite difference Newton's '
method with a line search, except that the Newton step —Jc_lF(zc) is modified to the approxi-
mation to the pseudo-inverse step —‘(J"_TJc + ([)—1 JCTF(J:C) with - small (see Dennis and Schna-

bel (1983]) when J, = F '(zc) is singular or sufficiently ill-conditioned.

The Newton and tensor methods were compared on sets of nonsingular and singular test

problems. The results are summarized briefly in Tables 2.1 - 2.3. The nonsingular test prob-
lems are a standard set in this field, given in Moré€, Garbow, and Hillstrom ;1981}; their dimen-
sions range from n = 2 to 30. The singular problems are simple modifications of these prob- :
lems constructed to have the same solution z, with rank(F '(z*)) = n—1 and n-2, respec- o
tively. The procedure for generating these singular problems is described in Schnabel and 1

Frank (1984, .

A significant feature of the test results is that the tensor method is virtually never less

efficient than the standard method, and is almost always more efficient. In fact, on problems

requiring ten or more iterations of the standard method, the tensor method always is more

efficient. The gains in efficiency on the nonsingular problems are an average of about 18°% if

LA

all test problems, including some very easy problems where no gains are likely, are considered,

and an average of about 327 improvement on the harder problems. The gains in efficiency on

the nonsingular problems are an average of about 40°¢ and 307 in the rank n -1 and n -2

AR

cases, respectively, and an average of about 579 and 467 improvement, respectively, on the
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Table 2.1 -- Summary for Problems with F l(z*) Nonsingular

Problem Number of] Average Ratio, Fensor|Standard|Tie
Set Problems | |Tensor Method / Standard Method | Better| Better
tterations Jacobian Function

evaluations | evaluations

r All prablems 25 0.811 0.813 0.828 18 1 6
. Harder problems only * 11 0.662 0.668 0.691 11 0 ]
Additional problems solved by standard method only : 2
by tensor method only : 1
Table 2.2 -- Summary for Singular Test Set with Rank (F '(z*)) =n-1
All Problems 17 || 0576 0.609 |  0.603 H 15 l 0 , 2
Harder Problems Only * 9 ll 0.392 , D.120 043¢ 19 0 0 h
Table 2.3 -- Summary for Singular Test Set with Rank (F (z,)) = n—2
All Problems 13 H 0.631 l 0.664 ‘ 0.729 ‘ 11 l 2 ‘ 0
Harder Problems Only * 7 0.499 0.535 0.542 7 0 0

Additional problems solved by standard method only : 1
by tensor method only : 5

* Problems where slower method required at least 10 iterations

harder problems. In addition, the tensor method sulved significantly more of the problems with

rank{F ’(z‘)) = n—2 than the standard method; this is not reflected in Table 2.3 which reflects

only problems solved by both methods.
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The improvements by the tensor method on the problems with rank(F '(z*)) = n—1 are
partially explained by the faster local convergence of the tensor method as discussed in Section
2.4. In fact, our stopping tolerances were relatively loose; at tighter stopping tolerances the
improvements by the tensor method on singular problems are greater. On nonsingular prob-
lems, the improvements by the tensor method apparently come from using a model that better
interpolates F(z); to our knowledge, the local convergence rate is no better than for Newton’s

method.

These computational results indicate that the derivative tensor method is consistently as
reliable as currently used methods for solving systems of nonlinear equations. In addition, on
problems where function evaluation is the dominant cost, it is consistently as efficient and
often considerably more efficient, especially on problems with a small rank deficiency in '(z‘).
The additional cost on the tensor method in arithm~tic nperations and computer storage is
small. Indeed, in our tests, even on problems with n = 30, the number of past points interpo-
lated by the tensot model generally was 1 or 2, so that the additional arithmetic and storage
costs are very small. For these reasons, we believe that the derivative tensor method should be
considered as a promising alternative to standard methods for general purpose software for

solving systems of nonlinear equations.

2.4 Convergence analysis for the derivative tensor method

Frank {1984 has extensively analyzed the local convergence of the derivative tensor
method. The most important result is that when rank(# I(z‘)) = n—1, the method described in
the previous sections is shown to be locally 3-step convergent with g-order 7/6, meaning that if
Hzy £l is sufficiently small. the sequence of iterates |z, | converges to r, and, for some ¢ 0,

obeys
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lzgy s — 2, < ¢ llg, —z,)°

for all k > 0. This rate of convergence is significantly faster than Newton's method which is
linearly convergent with constant approaching 1/2 under the same assumptions. For simplicity
of analysis, Frank’s result is proven for a method that interpolates only the most recent past
iterate (p =1); however it is not expected that interpolating additional past points would hurt

its performance.

The reasoning behind the three step convergence result is interesting because it heips
explain how the tensor method works on singular problems. From an arbitrary starting point
close to z, it is shown that the first step provides at least linear convergence and results in an
iterate whose error (its difference with 2,) is nearly in the direction of the null vector of
F '(z‘). The next step also provides at least linear convergence and also results in an error
nearly in the null vector direction. Thus after two steps, the current iterate and the previous
iterate are both close to being along the null vector direction from z, so that the step s, (the
difference of these iterates) used in constructing the tensor term is essentially in this direction.
Thus the quadratic term of the tensor model provides information in precisely the direction
where the linear model is lacking. This causes the third step to be a fast one, in fact giving an
order 1.5 improvement which would lead to three step g-order 1.5. (The smaller 7/6 rate
comes from allowing for the possibility that the first or second steps are, by luck, too good.)
After the third step, the error of the new iterate is not guaranteed to be close to the null space
of F ‘(z,(), so the three step process repeats. In practice, however, the errors appear to remain

close to the null space so that one step, at least g-superlinear, convergence is observed.

When the rank of F (z,) is less than n—1, the derivative tensor method probably is not
faster than linearly convergent in theory because the model described in Section 3.1 does not

approximate enough of F (z). However the test results of the previous section indicate that

fast convergence still is obtained in the case rank(F ’(z*)) = n-2. [t would be possible to
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approximate the necessary portions of ' (z) using previous values of the Jacobian rather than

the function; this has not be pursued.

When F '(z*) is nonsingular Frank [1984] shows that the tensor method retains the g-
quadratic convergence of Newton's method. This simply means that close to the solution, the
quadratic term of the tensor model has a small effect and does not hurt the convergence.
When n=1 it can be shown that the derivative tensor method has gq-order 2.41, but the tensor

method doesn’t interpolate enough information for this result to extend to multi-dimensional

problems.

3. Secant Tensor Methods

When analytic Jacobians are unavailable and function evaluation is sufficiently expensive,
it is not cost effective to calculate a finite difference Jacobian approximation at each iteration
of a method for solving systems of nonlinear equations. Instead, secant methods are used that

only occasionally used finite difference Jacobians and otherwise base the method strictly upon

the function values at the iterates.

The standard secant method for nonlinear equations, Broyden’s method, uses a linear
model of F(z) around z, that interpolates only F(z ) and F(z_), where z_, is the previous
iterate. Thus there are additional previous function values, namely F(z_,), F(z_,), ..., that a
method still could interpolate. In the derivative tensor method discussed in Section 2, the
interpolation of these function values was the basis for the tensor term T,. In the secant case,
however, since the first derivative matrix is not known, the value of F(z1) at a previous iterate

z_, only is sufficient to determine a linear model in the direction r, ~ z _,. Roughly speaking,
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only if there are two previous iterates in the same direction from z, is there sufficient informa-
tion to determine a quadratic model. This indicates that it will be more difficult to form a
quadratic model in the secant method case. Recall, however, that for singular problems the

iterates often converge nearly along a single direction so that a quadratic model still may be
possible.
Thus before considering how one might base a tensor secant model upon the interpolation

of multiple function values, it is relevant to discuss how a linear secant model can interpolate

multiple function values. We first summarize this briefly, and then discuss when and how we

form a secant tensor model, and our computational results with the secant tensor method.

3.1 Linear Models with Multiple Secant Equations

Suppose z, is the current iterate and Z_yy o I_, are a set of p not necessarily consecu-
tive past iterates chosen as in Section 2.1. That is, z_, is the most recent past iterate, and the
set of directions 18,1 = 1z_, —z,! are linearly independent. Then it is possible to choose the
Jacobian approximation J, E€R™™" so that the secant model (1.2) interpolates F(z_,),
k=1, - - - ,p. This requires

F(z—k):F(rc)+J¢8[‘ y k=1"",P . (31)

If S, YER™™ are defined by column k of § = sy, column k of Y = F(z_,) - F(z,), then
Schnabel ,1983] shows that the closest matrix J, to the previous Jacobian J_, that causes (3.1)

to be satisfied is

Jo=J_ +(Y-J_8)(sTs) "t sT . (3.2)

c

Broyden's method simply is the special case of (3.2) with p=1. The update (3.1) appears to be

a rank p change to J |, but if the linear model at the previous update interpolated all the
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same previous function values except F(z,), then (3.2) is a rank one update.

Multiple secant updates along these lines have been proposed by Barnes 1965, Gay and
Schnabel [{1978], and Schnabel {1983]. Frank [1984] implemented a version where the past
iterates to interpolate are chosen by the fairly restrictive criteria described in Section 2.1,
essentially very strong linear independence plus only V'n iterates considered. Schnabel (1983]
showed that this method is g-superlinearly convergent under the same conditions as Broyden’s
method. Frank found that on the nonsingular problems from the Moré, Garbow, and Hillstrom
[1981] test set the multiple secant method was better on 10 problems, worse on 2, and about
the same on 21, with an average improvement of 10%. On the singular problems described in

Section 3.3, the multiple secant method was only marginaily better than Broyden’s method.

These results indicate that a properly implemented multiple secant method, using a
linear model, is consistently at least as efficient as Broyden's method. Therefore, our secant
tensor method, which also is based on interpolating multiple function values, builds upon this

linear multiple secant model.

3.2 Forming the Secant Tensor Model

To determine a second order mode] of F(z) using function values only, it is necessary to
have more than p+1 function values that are nearly in some p dimensional subspace of the
variable space. To illustrate the approach taken in forming our secant tensor model, suppose
that there are two past iterates, z_, and z_,, and that the steps to them from z_, s, and s,,
are nearly linearly dependent. That is, s, = 13, +z where sz, =0 and llzli/Ws,ll is small.

The tensor secant model (1.5) interpolates F(z)at z_, and z_,if

Flz_,)=F(z,) + S5, + 2T 5,8, , k=12 (3.3)
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In the situation where s, and s, are nearly collinear, we interpret (3.3) as giving two

pieces of information in the direction s, and no new information in the direction z. Thus we
can make the a priori assumptions that

Je=J 1z, T s,2=T,22=0, (3.4) |
1

for we know that our minimum norm methods for choosing J, and T, will cause them to

satisly (3.4) if the secant equations are in the direction s, only. Combining (3.3) and (3.4) and

using s, = 115, +z gives
L

Flz_\) = F(z,) + J s, + =T s;s, (3.5a)

F(z_) = F(z,) +oJ,s, +J_jz +(0'/2) T.s,s, (3.5b)

Equations (3.5) are two linear equations in the two unknown vectors J.s, and T_s,s,, which
are easily solved to yield
(3.6a)

Joy=y = (a"u —v) /(o ~0)

T,s8, =t = (0w —v) /(a0 =0 (3.6b)

where u = F(z_,) -~ F(z,), v = F(z_,) ~ F(z,)-J_,z2.

Equations (3.6) are the secant equations for J, and T, respectively. Given these condi-

tions, we form J, as in the linear model multiple secant method and T, as in the derivative
tensor method. That is, J is given by (3.2) with ¥ =y and § = s, while T, = o s, s, with

g = t/(slT 31)2. Thus the tensor model becomes

M(z,+d) = F(z,) + J.d + % a (v d)’ (3.7)

with w = 3,

The remaining issue is the criterion for choosing s, to be "nearly linearly dependent” on

$;- The residual z cannot be allowed to be too large, or the inaccuracy in .J z may cause the
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tensor T, to be entirely inaccurate. Frank {1984, shows that it is necessary that fzIl -
O(Ilazﬂz) for the resultant T, to be reliable. Furthermore, he indicates that one can expect
consecutive iterates to satisfy this condition near the solution of a singular problem. There is
no reason, however, to expect this condition to be satisfied for nonsingular problems. Thus it is

likely that the quadratic term in the secant tensor method will be used near the roots of singu-

lar problems only.

Frank {1984] has generalized the above procedures to use more past iterates. First he
chooses p strongly linearly independent directions to past iterates by the same process used in
the derivative secant method and the linear model multiple secant method. This set of direc-
tions is the generalization of the direction s, in the above example. Then he chooses ¢ direc-
tions to additional past iterates that are nearly dependent on the subspace spanned by the first
set, in the sense described above. This set is the gencialization of the lirection », in the above
example. In our computational tests the second set contained 0 or 1 directions over 99% of the
time, so it suffices to consider this case. The result is a set of equations similar to (3.3), which
are easily reduced to the conditions /.S =Y, T,ww =t, for §, YER™® and some w in the

span of the columns of S. J, then is chosen by (3.2) while T, = aww with a = t/(wTw)z.

- ..
"o
L
»
'n'
-~

Thus the secant tensor model again is given by (3.7).

- -
[
e ‘a

[

3.3 Solving the Secant Tensor Model

Algebraically, the secant tensor model (3.7) is just the special case of the derivative ten-
sor model (2.5) with p=I. Thus its root or minimizer is found by the same procedures
described in Section 2.2. Since the tensor term has rank one, the solution process results in
finding the root or minimizer of one quadratic equation in one unknown followed by the solu-

tion of a system of n—1 linear equations and n -1 unknowns. Therefore no iterative procedure
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is required and the cost is essentially the same as for finding the root of a linear model.

, . . . . 2 .

[t is possible to perform each iteration of Broyden’s method in O{n") operations by
sequencing a QR factorization of J_ as proposed originally by Gill and Murray 1972). These
efficiencies can be extended to the secant tensor method so that it does not cost appreciately

2, . . . . .
more than the O(n”) implementation of Broyden's method. This was not done in our implemen-

tation.

In the case where the quadratic term of the secant tensor model has rank greater than

one (which virtually never occurred in practice), Frank '1984] solves the secant tensor model by

a minor generalization of the techniques of Section 2.2.

3.4 Computational Results with the Secant Tensor Method

A secant tensor method has been implemented and tested on the same nonsingular and

singular problems that were used for the derivative tensor method tests described in Section

2.3. The basic iteration is summarized in Algorithm 3.1 below.

s'
\ 3
\
)
: Algorithm 3.1. An Iteration of the Secant Tensor Method: given z,, F(z,)
1. Decide whether to stop. If not:
-, 2. Select the two sets of past points to use in the tensor model from among the Y'n most
S
’, .
., recent past points.

Calculate the first and second order terms of the tensor model, J, and T,, so that the ten-

|18
w

sor model interpolates F(z) at all the points selected in step 2.
4. Find the root of the tensor model, or its minimizer (in the /, norm) if it has no real root. ]
5. Select z_ by a trust region method that chooses r_ to be a linear combination of the

steepest descent direction, and the step calculated in step 4 or the root of the linear part

cTe TR AT AT
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of the model.

6. Set r, —z , F(z,)+—F(z ), go to step 1.

In addition to the strategy shown in Algorithm 3.1, the Jacobian is calculated by finite
differences at the initial iteration and whenever the secant algorithm calculates two unsuccess-
ful trial steps in a row. This later practice is taken from More's MINPACK algorithm (More,

Garbow, and Hillstrom '1980]), as is the use of a trust region strategy at step 5.

The secant tensor method described above was compared to a Broyden's method version
and to a linear model multiple secant method version of the same code. These were derived by
setting T_ = 0 in the secant model, and by allowing one or multiple secant equations for the
Jacobian approximation, respectively (i.e., p=1 or p ™1 in (3.1) and (3.2)}. The remainder of

the code was unchanged.

On the nonsingular test problems from Moré, Garbow, and Hillstrom {1981}, the secant
tensor method was better than Broyden's method on 9 problems, worse on 5, and about the
same on 18, with an average improvement in function evaluations of 9%. These results are
marginally worse than the results for the linear model multiple secant mcthod given in Section
3.1. Thus adding multiple interpolation conditions to the linear model seems to help a bit on

nonsingular problems, but the tensor term seems to give no additional help.

On the test problems with rank F '(z*) = n —1, the secant tensor method was better then
Broyden's method on 18 problems, worse on 1, and tied on 4, with an average improvement of
25%. On the test problems with rank F I(r‘) = n—?, the secant tensor method was better
than Broyden's method on 18 problems, worse on 1, and tied on 1, with an average improve-
ment of 339. In both of these cases, the linear model multiple secant method was not appreci-
ably better than Broyden's method. Thus the addition of a tensor term seems to help consider-

ably on problems with a low rank singularity at the solution.
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) In over 999% of the iterations on each test set, the rank of the tensor term was 0 or 1.
Implementing a secant tensor method with a rank one tensor requires little additional storage
and very few additional arithmetic operations in comparison to Broyden's method. Thus it
appears that the gains mentioned above can be obtained at little additional cost to the com-
puter, and a reasonably small increase in the complexity of the code. Therefore, such a secant )
tensor code might be a useful general purpose alternative to a Broyden's method code in a set-

ting where singular or ill-conditioned problems are solved regularly.

4. Extensions of Tensor Methods to Optimization Problems

The nonlinear least squares problem

min  HF(z)ll, , F:R™ —R" (4.1)
zeR”

can be viewed as an overdetermined version of the nonlinear equations problem (1.1). For non-
linear least squares, the Jacobian matrix always is computed analytically or approximated by

finite differences. Thus it is natural to consider extending the derivative teasor method sum-

marized in Section 2 to solving (4.1).

:

The derivative tensor method extends to overdetermined systems of equations with very
little change. The formation of the tensor mode!l is unchanged except that the model has m

quadratic components rather than n. The solution procedure outlined in Section 2.2 now

[RPLEL. ¢ e )

reduces the quadratic equations to the solution, in a least squares sense, of m - n +p quadratic

equations in p unknowns, followed by the solution of n—p linear equations in n - p unknowns.

(If p — O this is just the QR algorithm for solving the linear model in the least squares sense.}

The cost in arithmetic operations and computer storage again is hardly more than for a
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standard method for nonlinear least squares.

A tensor method for nonlinear least squares along these lines currently is being imple-
mented at the University of Colorado. This approach is most closely related to other nonlinear
equations based approaches to nonlinear least squares. Of these the most computationally
efficient appears to be More’s trust region Levenberg Marquardt algorithm (More [1978)),
implemented in MINPACK (Moré€, Garbow, and Hillstrom [{1980}), and it will be interesting to
see how the tensor method compares to this on full rank and rank deficient problems. An
alternate approach to nonlinear least squares, related more closely to viewing the problem as a
special case of unconstrained optimization, is embodied in the NL2SOL algorithm of Dennis,
Gay and Welsh 1981]. We also intend to compare the tensor method for nonlinear least

squares to this approach.

The general unconstrained optimization problem is

min f(z):R" — R . (4.2)
zeR”

The necessary condition for a solution of (4.2), Vf(z) = 0, is a system of n nonlinear equations
in n unknowns. The standard local method for (4.2), also called Newton's method, simply is

derived by applying (1.4) to this system of equations.

Thus it is tempting to expect that the tensor method for nonlinear equations can be
applied to unconstrained optimization simply by applying the methods of Sections 2 and 3 to
the system of equations V' f(z) = 0. This approach has several major faws. One is that all the
derivatives of the unconstrained optimization problem are symmetric, <o that their approxima-
tion should be too, but the tensors T, derived in Sections 2 and 3 are not 3-way symmetric.
More importantly, if an unconstrained optimization problem has a singular Hessian matrix at
a local minimizer, then the projection of the third derivative tensor Vsj(z,) in the null space

direction v of the Hessian (i.e. Va/(z_) v v v) must also be 0. Thus approximating the third
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derivative for unconstrained optimization, the analog of approximating the second derivative
as is done in our tensor methods for nenlinear equations, would not be expected to help solve
singular unconstrained optimization problems. [t appears that approximations to both the

third and fourth derivative matrices will be required to help solve singular optimization prob-

lems.

An approach to tensor methods for unconstrained optimization that makes small rank
approximations to the third and fourth derivatives currently is underway at the University of
Colorado. The eflect of approximating both third and fourth derivative matrices is that. at
each iteration, one must solve a small system of cubic equations in addition to the remaining

linear equations. The storage and arithmetic overhead remains reasonable. Very preliminary

computational results using this approach to solve singular optimization problems are

encouraging.
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